Disentangling cell-intrinsic and extrinsic factors underlying evolution

Author:

Starr Alexander L.,Nishimura Toshiya,Igarashi Kyomi J.,Funamoto Chihiro,Nakauchi Hiromitsu,Fraser Hunter B.

Abstract

SummaryA key goal of developmental biology is to determine the extent to which cells and organs develop autonomously, as opposed to requiring interactions with other cells or environmental factors. Chimeras have played a foundational role in this by enabling qualitative classification of cell-intrinsically vs. extrinsically driven processes. Here, we extend this framework to precisely decompose evolutionary divergence in any quantitative trait into cell-intrinsic, extrinsic, and intrinsic-extrinsic interaction components. Applying this framework to thousands of gene expression levels in reciprocal rat-mouse chimeras, we found that the majority of their divergence is attributable to cell-intrinsic factors, though extrinsic factors also play an integral role. For example, a rat-like extracellular environment extrinsically up-regulates the expression of a key transcriptional regulator of the endoplasmic reticulum (ER) stress response in some but not all cell types, which in turn strongly predicts extrinsic up-regulation of its target genes and of the ER stress response pathway as a whole. This effect is also seen at the protein level, suggesting propagation through multiple regulatory levels. Applying our framework to a cellular trait, neuronal differentiation, revealed a complex interaction of intrinsic and extrinsic factors. Finally, we show that imprinted genes are dramatically mis-expressed in species-mismatched environments, suggesting that mismatch between rapidly evolving intrinsic and extrinsic mechanisms controlling gene imprinting may contribute to barriers to interspecies chimerism. Overall, our conceptual framework opens new avenues to investigate the mechanistic basis of developmental processes and evolutionary divergence across myriad quantitative traits in any multicellular organism.

Publisher

Cold Spring Harbor Laboratory

Reference66 articles.

1. Roux Beiträge zur Entwickelungsmechanik des Embryos. I. Zur Orientirung über einige Probleme der organischen Entwickelung. Z Biol. 21, 411–524.

2. From “self-differentiation” to organoids—the quest for the units of development

3. Induction of embryonic primordia by implantation of organizers from a different species. 1923;Int. J. Dev. Biol.,2001

4. The ontogeny of the neural crest in avian embryo chimaeras

5. Twitty, Victor C . (1936). CORRELATED GENETIC AND EMBRYOLOGICAL EXPERIMENTS ON TRITURUS. I and II. The Journal of Experimental Zoology 74.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3