Transcriptional repression and enhancer decommissioning silence cell cycle genes in postmitotic tissues

Author:

Fogarty Elizabeth A.,Buchert Elli M.,Ma Yiqin,Nicely Ava B.,Buttitta Laura A.

Abstract

AbstractThe mechanisms that maintain a non-cycling status in postmitotic tissues are not well understood. Many cell cycle genes have promoters and enhancers that remain accessible even when cells are terminally differentiated and in a non-cycling state, suggesting their repression must be maintained long term. In contrast, enhancer decommissioning has been observed for rate-limiting cell cycle genes in theDrosophilawing, a tissue where the cells die soon after eclosion, but it has been unclear if this also occurs in other contexts of terminal differentiation. In this study, we show that enhancer decommissioning also occurs at specific, rate-limiting cell cycle genes in the long-lived tissues of theDrosophilaeye and brain, and we propose this loss of chromatin accessibility may help maintain a robust postmitotic state. We examined the decommissioned enhancers at specific rate-limiting cell cycle genes and show that they encode dynamic temporal and spatial expression patterns that include shared, as well as tissue-specific elements, resulting in broad gene expression with developmentally controlled temporal regulation. We extend our analysis to cell cycle gene expression and chromatin accessibility in the mammalian retina using a published dataset, and find that the principles of cell cycle gene regulation identified in terminally differentiatingDrosophilatissues are conserved in the differentiating mammalian retina. We propose a robust, non-cycling status is maintained in long-lived postmitotic tissues through a combination of stable repression at most cell cycle gens, alongside enhancer decommissioning at specific rate-limiting cell cycle genes.HighlightsIn long-lived postmitoticDrosophilatissues, most cell cycle genes retain accessible chromatin despite persistent transcriptional downregulation.Cell cycle genes with accessible enhancers remain activatable during terminal differentiation, suggesting their repression must be continuously maintained in the postmitotic state.Long-lived postmitotic tissues decommission enhancers at specific, rate-limiting cell cycle genes in a developmentally regulated manner.Genome-wide enhancer identification performed in cell culture misses many developmentally dynamic enhancersin vivo.Decommissioned enhancers at cell cycle genes include shared and tissue-specific elements that in combination, result in broad gene expression with temporal regulation.The principles of cell cycle gene regulation identified inDrosophilaare conserved in the mammalian retina.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3