Feather aerodynamics suggest importance of lift and flow predictability over drag minimization

Author:

Alenius FridaORCID,Revstedt JohanORCID,Johansson L. ChristofferORCID

Abstract

Partly overlapping feathers form a large part of birds’ wing surfaces, but in many species the outermost feathers split, making each feather function as an independent wing. These feathers are complex structures that evolved to fulfil both aerodynamic and structural functions. Yet, relatively little is known about how the profile shape and microstructures of feathers impact aerodynamic performance. Here we determine, using fluid dynamic modelling, the aerodynamic capabilities of a section of the primary flight feather forming the leading edge of the split wing tip of a Jackdaw (Corvus monedula). Our findings demonstrate that the feather section exhibits a relatively high performance, with lift comparable to manmade aerofoils and plates with larger camber at higher Reynolds number. However, there is a drag penalty associated with the feather shaft. The model’s vortex shedding behaviour results in stable lift, with small fluctuations, compared to manmade aerofoils. Notably, the aerodynamic pitch torque around the shaft varies with angle of attack. This, when combined with the built-in pitch-up twist of the feather implies a passive pitch control mechanism for the feather. Taken together, our findings suggest evolutionary adaptations of the flow around the feather, which could be of interest when designing micro-air vehicles and wind turbines.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3