Visual network modularity and communication alterations in ADHD subtypes: evidence from source localized EEG and graph theoretical analysis

Author:

Ghaderi Amir Hossein,Taghizadeh Shiva,Nazari Mohammad Ali

Abstract

AbstractThe neurobiological basis of ADHD and its subtypes remains unclear, with inconsistent findings from studies using electrophysiology and neuroimaging. Some studies suggest ADHD-I is a distinct disorder, but there is also evidence of similar neural basis in ADHD-I and ADHD-C subtypes. This study investigates the neural basis of ADHD and its subtypes using a subnetwork modularity approach based on graph theoretical analysis of EEG data from 35 children aged 7-11. EEG was recorded in the eyes open condition and preprocessed. After preprocessing, data was analyzed using LORETA algorithm to estimate current densities in 84 regions of interest (ROIs) in the cortex and calculate functional connectivity between these ROIs in different EEG frequency bands. Then, we evaluated modularity of five functional brain networks (default mode, central control, salience, visual, and sensorimotor) using Newman modularity algorithm. Further, we evaluated edge betweenness centrality to assess communications between these functional brain networks. The study found that different brain networks have modularity in certain frequency bands, and ADHD groups showed reduced modularity of the visual network compared to normal groups in the alpha1 band (8-10 Hz). The communication between the visual network and other brain networks, except the salience network, was also reduced in ADHD groups (in the alpha1 band). However, there were no significant differences in the modularity of brain networks and communication among them between two ADHD subtypes. The results suggest a novel mechanism for ADHD involving lower intrinsic modularity in the visual network, disturbed communication between the visual network and other networks, and potential impact on the function of control and sensorimotor networks. Further, our results suggest that there may be a common neural basis for both subtypes, involving a shared disturbance in the modularity and connectivity of the ventral network. This supports the idea that ADHD-I and ADHD-C are subtypes within the same category and contradicts previous studies that suggest they are separate disorders.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3