Author:
Wollet Mackenna,Hernandez Abram,Nip Kaila,Pugh Jason,Kim Jun Hee
Abstract
AbstractExposure to nicotine in utero, often due to maternal smoking, significantly elevates the risk of auditory processing deficits in offspring. This study investigated the effects of chronic nicotine exposure during a critical developmental period on the functional expression of nicotinic acetylcholine receptors (nAChRs), glutamatergic synaptic transmission, and auditory processing in the mouse auditory brainstem. We evaluated the functionality of nAChRs at a central synapse and explored the impact of perinatal nicotine exposure (PNE) on synaptic currents and auditory brainstem responses (ABR) in mice. Our findings revealed developmentally regulated changes in nAChR expression in the medial nucleus of the trapezoid body (MNTB) neurons and presynaptic Calyx of Held terminals. PNE was associated with enhanced acetylcholine-evoked postsynaptic currents and compromised glutamatergic neurotransmission, highlighting the critical role of nAChR activity in the early stages of auditory synaptic development. Additionally, PNE resulted in elevated ABR thresholds and diminished peak amplitudes, suggesting significant impairment in central auditory processing without cochlear dysfunction. This study provides novel insights into the synaptic disturbances that contribute to auditory deficits resulting from chronic prenatal nicotine exposure, underlining potential targets for therapeutic intervention.
Publisher
Cold Spring Harbor Laboratory