parafac4microbiome: Exploratory analysis of longitudinal microbiome data using Parallel Factor Analysis

Author:

van der Ploeg G.R.ORCID,Westerhuis J.A.,Heintz-Buschart A.,Smilde A.K.

Abstract

AbstractBackgroundRecently, studies that investigate microbial temporal dynamics have become more frequent. In a longitudinal microbiome study design, microbial abundance data are collected across multiple time points from the same subjects. In this context, exploratory analysis of longitudinal microbiome data using Principal Component Analysis is insufficient because the study design is not fully utilized. Indeed, the study design can be used to create a three-way data array where the rows constitute the subjects, the columns contain the microbial abundances, and the third dimension contains the time points. Organising the data this way enables multi-way methodologies that take full advantage of the study design. In this work we present Parallel Factor Analysis (PARAFAC) as a method to explore longitudinal microbiome data using three exemplary studies.ResultsIn the first example study, a long time series of experimental in vitro microbiomes, we show that PARAFAC can identify the main time-resolved variation in longitudinal microbiome data. In the second example, a longitudinal infant gut microbiome study, we show that PARAFAC can find differences between subject groups and enhance comparative analysis despite a moderate amount of missing data. In the third example, a longitudinal gingivitis intervention study of the oral microbiome, we show that PARAFAC helps identify microbial groups of interest using a post-hoc clustering approach.ConclusionsWe show that Parallel Factor Analysis is an applicable method for longitudinal microbiome data analysis across a wide range of microbial environments. The analyses and the example datasets with the resulting figures are implemented in the R package parafac4microbiome, which is available online athttps://github.com/GRvanderPloeg/parafac4microbiome.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3