Optimizing Peptide Crosslinks for Cell-Responsive Hydrogels

Author:

Wu Yingjie,Rozans Samuel J.,Moghaddam Abolfazl Salehi,Pashuck E. ThomasORCID

Abstract

AbstractCells dynamically modify their local extracellular matrix by expressing proteases that degrade matrix proteins. This enables cells to spread and migrate within tissues, and this process is often mimicked in hydrogels through the incorporation of peptide crosslinks that can be degraded by cell-secreted proteases. However, the cleavage of hydrogel crosslinks will also reduce the local matrix mechanical properties, and most crosslinking peptides, such as the widely used GPQGIWGQ “PanMMP” sequence, lead to bulk degradation of the hydrogel. A subset of proteases are localized to the cell membrane and are only active in the pericellular region in the immediate vicinity of the cell surface. These membrane-type proteases have important physiological roles and enable cells to migrate within tissues. In this work we developed an approach to identify and optimize peptide sequences that are specifically degraded by membrane-type proteases. We utilized a proteomic screen to identify peptide targets, and coupled this with a functional assay that both quantifies peptide degradation by individual cell types and can elucidate whether the peptides are primarily cleaved by soluble proteases or membrane-type proteases. We then used a split-and-pool synthesis approach to generate more than 300 variants of the target peptide to improve the degradation behavior. We identified an optimized peptide sequence, KLVADLMASAE, which is primarily degraded by membrane-type proteases, but enables both endothelial cells and stem cells grown in KLVADLMASAE-crosslinked hydrogels to spread and have viabilities similar to the gels crosslinked by the PanMMP peptide. Notably, the biological performance of the KLVADLMASAE peptide-cross linked gels was significantly improved from the initial peptide target found in the proteomic screen. This work introduces a functional approach to identifying and refining protease-substrate peptides as a way to enhance the properties of hydrogel matrices.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3