Genetic variants associated with cell-type-specific intra-individual gene expression variability reveal new mechanisms of genome regulation

Author:

Xue Angli,Yazar Seyhan,Alquicira-Hernández José,Cuomo Anna S E,Senabouth Anne,Gordon Gracie,Kathail Pooja,Ye Chun Jimme,Hewitt Alex W.,Powell Joseph E.

Abstract

AbstractGene expression levels can vary substantially across cells, even in a seemingly homogeneous cell population. Identifying the relationships between genetic variation and gene expression is critical for understanding the mechanisms of genome regulation. However, the genetic control of gene expression variability among the cellswithinindividuals has yet to be extensively examined. This is primarily due to the statistical challenges, such as the need for sufficiently powered cohorts and adjusting mean-variance dependence. Here, we introduce MEOTIVE (Mapping genetic Effects On inTra-Individual Variability of gene Expression), a novel statistical framework to identify genetic effects on the gene expression variability (sc-veQTL) accounting for the mean-variance dependence. Using single-cell RNA-seq data of 1.2 million peripheral blood mononuclear cells from 980 human donors, we identified 14 – 3,488 genes with significant sc-veQTLs (study-wideq-value < 0.05) across different blood cell types, 2,103 of which were shared across more than one cell type. We further detected 55 SNP-gene pairs (in 34 unique genes) by directly linking genetic variations with gene expression dispersion (sc-deQTL) regardless of mean-variance dependence, and these genes were enriched in biological processes relevant to immune response and viral infection. An example is rs1131017 (p<9.08×10−52), a sc-veQTL in the 5’UTR ofRPS26, which shows a ubiquitous dispersion effect across cell types, with higher dispersion levels associated with lower auto-immune disease risk, including rheumatoid arthritis and type 1 diabetes. Another example isLYZ, which is associated with antibacterial activity against bacterial species and was only detected with a monocyte-specific deQTL (rs1384) located at the 3’ UTR region (p=1.48×10−11) and replicated in an independent cohort. Our results demonstrate an efficient and robust statistical method to identify genetic effects on gene expression variability and how these associations and their involved pathways confer auto-immune disease risk. This analytical framework provides a new approach to unravelling the genetic regulation of gene expression at the single-cell resolution, advancing our understanding of complex biological processes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3