Plasma-derived Extracellular Vesicles (EVs) as Biomarkers of Sepsis in Burn Patients via Label-free Raman Spectroscopy

Author:

O’Toole Hannah J.ORCID,Lowe NeonaORCID,Arun VishalakshiORCID,Kolesov Anna V.ORCID,Palmieri Tina L.ORCID,Tran Nam K.ORCID,Carney Randy P.ORCID

Abstract

AbstractSepsis following burn trauma is a global complication with high mortality, with ∼60% of burn patient deaths resulting from infectious complications. Sepsis diagnosis is complicated by confounding clinical manifestations of the burn injury, and current biomarkers markers lack the sensitivity and specificity required for prompt treatment. Circulating extracellular vesicles (EVs) from patient liquid biopsy as biomarkers of sepsis due to their release by pathogens from bacterial biofilms and roles in subsequent immune response. This study applies Raman spectroscopy to patient plasma derived EVs for rapid, sensitive, and specific detection of sepsis in burn patients, achieving 97.5% sensitivity and 90.0% specificity. Furthermore, spectral differences between septic and non-septic burn patient EVs could be traced to specific glycoconjugates of bacterial strains associated with sepsis morbidity. This work illustrates the potential application of EVs as biomarkers in clinical burn trauma care, and establishes Raman analysis as a fast, label-free method to specifically identify features of bacterial EVs relevant to infection amongst the host background.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3