Development and assessment of a new multichannel electrocutaneous device for non-invasive somatosensory stimulation for magnetic resonance applications

Author:

Travassos CarolinaORCID,Sayal AlexandreORCID,Fonte PauloORCID,Carolino Nuno,Direito BrunoORCID,Lopes LuisORCID,Afonso SoniaORCID,Lopes Tania,Sousa TeresaORCID,Castelo-Branco MiguelORCID

Abstract

AbstractElectrocutaneous stimulation (ES) relies on the application of an electrical current flowing through the surface of the skin, eliciting a tactile percept. It can be applied for somatosensory mapping approaches at functional magnetic resonance imaging (fMRI) to obtain somatotopic maps illustrating the spatial patterns reflecting the functional organization of the primary somatosensory cortex (S1). However, its accessibility remains constrained, particularly in applications requiring multiple stimulation channels. Furthermore, the magnetic resonance (MR) environment poses several limitations in this regard. This study presents a prototype of a multichannel electrocutaneous stimulation device designed for somatosensory stimulation of the upper limbs of human participants in an MR environment in an inexpensive, safe, customizable, controlled, reproducible, and automated way. Our current-controlled, voltage-limited, stimulation device comprises 20 stimulation channels that can be individually configured to deliver various non-simultaneous combinations of personalized electrical pulses, depending on the subject, stimulation site, and stimulation paradigm. It can deliver a predefined electrical stimulus during fMRI acquisition, synchronized with the stimulation task design and triggered upon initiation of the acquisition sequence. Regarding device assessment, we conducted tests using an electrical circuit equivalent to the impedance of the human body and the electrode-skin interface to validate its feasibility. Then, we evaluated user acceptability by testing the device in human participants. Considering the stringent conditions of the MR environment, we performed a comprehensive set of safety and compatibility evaluations using a phantom. Lastly, we acquired structural and functional MR data from a participant during a somatosensory stimulation experiment to validate brain activity elicited by electric stimulation with our device. These assessments confirmed the device’s safety in fMRI studies and its ability to elicit brain activity in the expected brain areas. The scope of application of our device includes fMRI studies focused on somatosensory mapping and brain-computer interfaces related to somatosensory feedback.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3