Disruption of Immune Responses By Type I Diabetes Exacerbates SARS-CoV-2 Mediated Lung Injury

Author:

Kass-Gergi Sara,Zhao Gan,Wong Joanna,Weiner Aaron I.,Tzivelekidis Stephanie Adams,Gentile Maria E.,Mendoza Meryl,Holcomb Nicolas P.,Li Xinyuan,Singh Madeline,Vaughan Andrew E.ORCID

Abstract

ABSTRACTCOVID-19 commonly presents as pneumonia, with those most severely affected progressing to respiratory failure. Patient responses to SARS-CoV-2 infection are varied, with comorbidities acting as major contributors to varied outcomes. Focusing on one such major comorbidity, we assessed whether pharmacological induction of Type I Diabetes Mellitus (T1DM) would increase the severity of lung injury in a murine model of COVID-19 pneumonia utilizing wild type mice infected with mouse-adapted SARS-CoV-2. Hyperglycemic mice exhibited increased weight loss and reduced blood oxygen saturation in comparison to their euglycemic counterparts, suggesting that these animals indeed experienced more severe lung injury. Transcriptomic analysis revealed a significant impairment of the adaptive immune response in the lungs of diabetic mice compared to those of control. In order to expand the limited options available for tissue analysis due to biosafety restrictions, we also employed a novel technique to digest highly fixed tissue into a single cell suspension, which allowed for flow cytometric analysis as well as single cell RNA sequencing. Flow immunophenotyping and scRNA-Seq confirmed impaired recruitment of T cells into the lungs of T1DM animals. Additionally, scRNA-Seq revealed a distinct, highly inflammatory macrophage profile in the diabetic cohort that correlates with the more severe infection these mice experienced clinically, allowing insight into a possible mechanism for this phenomenon. Recognizing the near certainty that respiratory viruses will continue to present significant public health concerns for the foreseeable future, our study provides key insights into how T1DM results in a much more severe infection and identifies possible targets to ameliorate comorbidity-associated severe disease.NEW AND NOTEWORTHYWe define the exacerbating effects of Type I Diabetes Mellitus (T1DM) on COVID-19 pneumonia severity in mice. Hyperglycemic mice experienced increased weight loss and reduced oxygen saturation. Transcriptomic analysis revealed impaired immune responses in diabetic mice, while flow cytometry and single-cell RNA sequencing confirmed reduced T cell recruitment and an inflammatory macrophage profile. Additionally, we introduced a novel technique for tissue analysis, enabling flow cytometric analysis and single-cell RNA sequencing on highly fixed tissue samples.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3