Author:
Yang Mengru,Adegbite Oluwatobi,Chang Ping,Zhu Xiaojun,Li Yan,Dykes Gregory F.,Chen Yu,Savage Natasha,Hinton Jay C. D.,Lian Lu-Yun,Liu Lu-Ning
Abstract
AbstractMany pathogenic bacteria use proteinaceous ethanolamine-utilization microcompartments (Eut BMCs) to facilitate the catabolism of ethanolamine, an abundant nutrient in the mammalian gut. The ability to metabolize ethanolamine gives pathogens a competitive edge over commensal microbiota which can drive virulence in the inflamed gut. Despite their critical functions, the molecular mechanisms underlying the synthesis of Eut BMCs in bacterial cells remain elusive. Here, we report a systematic study for dissecting the molecular basis underlying Eut BMC assembly inSalmonella. We determined the functions of individual building proteins in the structure and function of Eut BMCs and demonstrated that EutQ plays an essential role in both cargo encapsulation and Eut BMC formation through specific association with the shell and cargo enzymes. Furthermore, our data reveal that Eut proteins can self-assemble to form cargo and shell aggregates independentlyin vivo, and that the biogenesis of Eut BMCs follows a unique “Shell-first” pathway. Cargo enzymes exhibit dynamic liquid-like organization within the Eut BMC. These discoveries provide mechanistic insights into the structure and assembly of the Eut BMC, which serves as a paradigm for membrane-less organelles. It opens up new possibilities for therapeutic interventions for infectious diseases.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献