Abstract
AbstractTreatment for major depressive disorder (depression) often has partial efficacy and a large portion of patients are treatment resistant. Recent studies implicate reduced somatostatin (SST) interneuron inhibition in depression, and new pharmacology boosting this inhibition via positive allosteric modulators of α5-GABAAreceptors (α5-PAM) offers a promising effective treatment. However, testing the effect of α5-PAM on human brain activity is limited, meriting the use of detailed simulations. We utilized our previous detailed computational models of human depression microcircuits with reduced SST interneuron inhibition and α5-PAM effects, to simulate EEG of virtual subjects across depression severity and α5-PAM doses. We developed machine learning models that predicted optimal dose from EEG with high accuracy and recovered microcircuit activity and EEG. This study provides dose prediction models for α5-PAM administration based on EEG biomarkers of depression severity. Given limitations in doing the above in the living human brain, the results and tools we developed will facilitate translation of α5-PAM treatment to clinical use.
Publisher
Cold Spring Harbor Laboratory