Author:
Cheng Han,Yan Yan,Zhang Biao,Ma Zhuolin,Fu Siwen,Ji Zhi,Zou Ziji,Wang Qin
Abstract
AbstractGlioblastoma (GBM) is the most prevalent and aggressive primary brain malignancy in adults. Nevertheless, the cellular heterogeneity and complexity within the GBM microenvironment (TME) are still not fully understood, posing a significant obstacle in the advancement of more efficient immunotherapies for GBM. In this study, we conducted an integrated analysis of 48 tumor fragments from 24 GBM patients at the single-cell level, uncovering substantial molecular diversity within immune infiltrates. We characterized molecular signatures for five distinct tumor-associated macrophage (TAM) subtypes. Notably, the TAM_MRC1 subtype displayed a pronounced M2 polarization signature. Additionally, we identified a subtype of natural killer (NK) cells, designated CD56dim_DNAJB1. This subtype is characterized by an exhausted phenotype, evidenced by an elevated stress signature and enrichment in the PD-L1/PD-1 checkpoint pathway. Our findings also highlight significant cell-cell interactions among malignant glioma cells, TAM, and NK cells within the TME. Overall, this research sheds light on the functional heterogeneity of glioma and immune cells in the TME, providing potential targets for therapeutic intervention in this immunologically cold cancer.
Publisher
Cold Spring Harbor Laboratory