Author:
Royba Ekaterina,Shuryak Igor,Ponnaiya Brian,Repin Mikhail,Pampou Sergey,Karan Charles,Turner Helen,Garty Guy,Brenner David J.
Abstract
AbstractIn cytogenetic biodosimetry, assessing radiation exposure typically requires over 48 hours for cells to reach mitosis, significantly delaying the administration of crucial radiation countermeasures needed within the first 24 hours post-exposure. To improve medical response times, we incorporated the G0-Premature Chromosome Condensation (G0-PCC) technique with the Rapid Automated Biodosimetry Tool-II (RABiT-II), creating a faster alternative for large-scale radiation emergencies. Our findings revealed that using a lower concentration of Calyculin A (Cal A) than recommended effectively increased the yield of highly-condensed G0-PCC cells (hPCC). However, integrating recombinant CDK1/Cyclin B kinase, vital for chromosome condensation, proved challenging due to the properties of these proteins affecting interactions with cellular membranes. Interestingly, Cal A alone was capable of inducing chromosome compaction in some G0 cells even in the absence of mitotic kinases, although these chromosomes displayed atypical morphologies. This suggests that Cal A mechanism for compacting G0 chromatin may differ from condensation driven by mitotic kinases. Additionally, we observed a correlation between radiation dose and extent of hPCC chromosome fragmentation, which allowed us to automate radiation damage quantification using a Convolutional Neural Network (CNN). Our method can address the need for a same-day cytogenetic biodosimetry test in radiation emergency situations.
Publisher
Cold Spring Harbor Laboratory