Spleen tyrosine kinase inhibition mitigates hemin-induced thromboinflammation in the lung and kidney of sickle cell mice

Author:

El-Awaisi JumaORCID,Perrella GinaORCID,Mayor Nicolas,Tinkova Veronika,Cleary Simon JORCID,Grygielska Beata,Watson Steve PORCID,Dimitrov Jordan DORCID,Brill AlexanderORCID,Nicolson Phillip LR,Kavanagh DeanORCID,Kalia Neena,Rayes JulieORCID

Abstract

AbstractSickle cell disease (SCD) leads to hemolytic anemia, vaso-occlusive crisis (VOC), hypoperfusion, and progressive organ damage. Hemin, released during hemolysis in SCD, induces platelet activation through CLEC-2, endothelial activation through TLR4, neutrophil adhesion and NETosis, all of which are regulated by spleen tyrosine kinase (Syk). In this study, we assessed neutrophil and platelet recruitment to the pulmonary, renal, splenic, and hepatic microvasculature in control and SCD mice following hemin injection and the effect of Syk inhibition on cell recruitment and organ perfusion. Compared to controls, SCD mice exhibited higher baseline neutrophil and platelet recruitment to the lungs without alterations in lung perfusion as measured by laser speckle contrast imaging. Injection of hemin increased cell recruitment to the pulmonary and renal vasculature with a concomitant reduction in organ perfusion. However, hemin injection did not change cell recruitment or organ perfusion in the spleen and liver, both of which were altered at baseline in SCD mice. Pretreatment of SCD mice with the Syk inhibitor BI-1002494 mitigated baseline and hemin-induced neutrophil and platelet adhesion in the pulmonary and renal microvasculature, with a corresponding normalization of perfusion. Syk regulates vascular integrity in the lung of SCD mice; whilst high concentrations of BI-1002494 increased bleeding, lowering drug concentrations preserved the inhibitory effect on platelet and neutrophil recruitment and lung perfusion and protected from bleeding complications. These data substantiate Syk as a mediator of vascular thrombo-inflammation and hypoperfusion in the lung and kidney of SCD and provide a rationale for pharmacological inhibition as a therapeutic strategy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3