IB-DNQ and Rucaparib dual treatment alters cell cycle regulation and DNA repair in triple negative breast cancer cells

Author:

Runnebohm Avery M.,Wijeratne H.R. Sagara,Peck Justice Sarah A.,Wijeratne Aruna B.,Roy Gitanjali,Singh Naveen,Hergenrother Paul,Boothman David A.,Motea Edward A.,Mosley Amber L.

Abstract

ABSTRACTBackgroundTriple negative breast cancer (TNBC), characterized by the lack of three canonical receptors, is unresponsive to commonly used hormonal therapies. One potential TNBC-specific therapeutic target is NQO1, as it is highly expressed in many TNBC patients and lowly expressed in non-cancer tissues. DNA damage induced by NQO1 bioactivatable drugs in combination with Rucaparib-mediated inhibition of PARP1-dependent DNA repair synergistically induces cell death.MethodsTo gain a better understanding of the mechanisms behind this synergistic effect, we used global proteomics, phosphoproteomics, and thermal proteome profiling to analyze changes in protein abundance, phosphorylation and protein thermal stability.ResultsVery few protein abundance changes resulted from single or dual agent treatment; however, protein phosphorylation and thermal stability were impacted. Histone H2AX was among several proteins identified to have increased phosphorylation when cells were treated with the combination of IB-DNQ and Rucaparib, validating that the drugs induced persistent DNA damage. Thermal proteome profiling revealed destabilization of H2AX following combination treatment, potentially a result of the increase in phosphorylation. Kinase substrate enrichment analysis predicted altered activity for kinases involved in DNA repair and cell cycle following dual agent treatment. Further biophysical analysis of these two processes revealed alterations in SWI/SNF complex association and tubulin / p53 interactions.ConclusionsOur findings that the drugs target DNA repair and cell cycle regulation, canonical cancer treatment targets, in a way that is dependent on increased expression of a protein selectively found to be upregulated in cancers without impacting protein abundance illustrate that multi-omics methodologies are important to gain a deeper understanding of the mechanisms behind treatment induced cancer cell death.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3