Gene regulatory activity associated with PCOS revealedDENND1A-dependent testosterone production

Author:

Sankaranarayanan LaavanyaORCID,Brewer Kelly J,Johnson Graham DORCID,Barrera AlejandroORCID,Venukuttan Revathy,Sisk Ryan,Dunaif AndreaORCID,Reddy Timothy EORCID

Abstract

AbstractPolycystic ovary syndrome (PCOS) is among the most common disorders affecting up to 15% of the menstruating population globally. It is the leading cause of anovulatory infertility and a major risk factor for type 2 diabetes. Elevated testosterone levels are a core endophenotype. Despite that prevalence, the underlying causes remain unknown. PCOS genome-wide association studies (GWAS) have reproducibly mapped a number of susceptibility loci, including one encompassing a gene regulating androgen biosynthesis, DENND1A. Identifying the causal variants within these loci will provide fundamental insight into the precise biological pathways that are disrupted in PCOS. We report the discovery of gene regulatory mechanisms that help explain genetic association with PCOS in the GATA4, FSHB and DENND1A loci using a combination of high throughput reporter assays, CRISPR-based epigenome editing, and genetic association analysis from PCOS case and control populations. In addition, we found that increased endogenous DENND1A expression causes elevated testosterone levels in an adrenal cell model, specifically by perturbing candidate regulatory elements. These results further highlight the potential for combining genetic variant analyses with experimental approaches to fine map genetic associations with disease risk.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3