H3F3A K27M Mutations Drives a Repressive Transcriptome by Modulating Chromatin Accessibility, Independent of H3K27me3 in Diffuse Midline Glioma

Author:

Bhattarai SurajORCID,Hakkim Faruck L.ORCID,Day Charles A.ORCID,Grigore Florina,Langfald Alyssa,Entin Igor,Hinchcliffe Edward H.ORCID,Robinson James P.ORCID

Abstract

AbstractBackgroundHeterozygous histone H3.3K27M mutation is a primary oncogenic driver of Diffuse Midline Glioma (DMG). H3.3K27M inhibits the Polycomb Repressive Complex 2 (PRC2) methyltransferase complex, leading to a global reduction and redistributing of the repressive H3 lysine 27 tri-methylation. This rewiring of the epigenome is thought to promote gliomagenesis.MethodsWe established novel, isogenic DMG patient-derived cell lines that have been CRISPR-Cas9 edited to H3.3 WT or H3.3K27M alone and in combination with EZH2 and EZH1 co-deletion, inactivating PRC2 methyltransferase activity of PRC2 and eliminating H3K27me3.ResultsRNA-seq and ATAC-seq analysis of these cells revealed that K27M has a novel epigenetic effect that appears entirely independent of its effects on PRC2 function. While the loss of the PRC2 complex led to a systemic induction of gene expression (including HOX gene clusters) and upregulation of biological pathways, K27M led to a balanced gene deregulation but having an overall repressive effect on the biological pathways. Importantly, the genes uniquely deregulated by the K27M mutation, independent of methylation loss, are closely associated with changes in chromatin accessibility, with upregulated genes becoming more accessible. Notably, the PRC2- independent function of K27M appears necessary for tumorigenesis as xenografts of our H3.3K27M/EZH1/2 WT cells developed into tumors, while H3.3/EZH1/2 KO cells did not.ConclusionWe demonstrate that K27M mutation alters chromatin accessibility and uniquely deregulates genes, independent of K27 methylation. We further show the mutation’s role in altering biological pathways and its necessity for tumor development.Key PointsWe revealed genes regulated by H3.3K27M mutation and PRC2 in DMG.H3.3K27M mutation alters chromosome accessibility independent of H3K27me3.PRC2-independent effects of K27M mutation are crucial for tumor development.Importance of the StudyThis study is the first to demonstrate that H3F3A K27M mutations drive a repressive transcriptome by modulating chromatin accessibility independently of H3K27 trimethylation in Diffuse Midline Glioma (DMG). By isolating the effects of H3.3 K27me3 loss from those of the K27M mutation, we identified common and unique genes and pathways affected by each. We found that genes uniquely deregulated by K27M showed increased chromatin accessibility and upregulated gene expression, unlike other gene subsets affected by PRC2 knockout. Importantly, we determined the PRC2-independent function of K27M is also essential for tumorigenesis, as xenografts of H3.3 K27M/PRC2 WT cell lines formed tumors, while H3.3WT/PRC2 WT and K27M/PRC2 knockout cells did not. This research builds upon and advances prior studies, such as those identifying EZH2 as a therapeutic target in H3.3K27M DMGs, by revealing critical new pathways for gliomagenesis. The translational significance lies in identifying novel therapeutic targets against this aggressive pediatric cancer.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3