Predicting the infecting dengue serotype from antibody titre data using machine learning

Author:

Cracknell Daniels BethanORCID,Buddhari Darunee,Hunsawong Taweewun,Iamsirithaworn Sopon,Farmer Aaron R,Cummings Derek A.T.,Anderson Kathryn B.,Dorigatti IlariaORCID

Abstract

AbstractThe development of a safe and efficacious vaccine that provides immunity against all four dengue virus serotypes is a priority, and a significant challenge for vaccine development has been defining and measuring serotype-specific outcomes and correlates of protection. The plaque reduction neutralisation test (PRNT) is the gold standard assay for measuring serotype-specific antibodies, but this test cannot differentiate homotypic and heterotypic antibodies and characterising the infection history is challenging. To address this, we present an analysis of pre- and post-infection antibody titres measured using the PRNT, collected from a prospective cohort of Thai children. We applied four machine learning classifiers and multinomial logistic regression to the titre data to predict the infecting serotype. The models were validated against the true infecting serotype, identified using RT-PCR. Model performance was calculated using 100 bootstrap samples of the train and out-of-sample test sets. Our analysis showed that, on average, the greatest change in titre was against the infecting serotype. However, in 53.4% (109/204) of the subjects, the highest titre change did not correspond to the infecting serotype, including in 34.3% (12/35) of dengue-naïve individuals. The highest post-infection titres of seropositive cases were more likely to match the serotype of the highest pre-infection titre than the infecting serotype, consistent with original antigenic sin. Despite these challenges, the best performing machine learning algorithm achieved 76.3% (95% CI 57.9-89.5%) accuracy on the out-of-sample test set in predicting the infecting serotype from PRNT data. Incorporating additional spatiotemporal data improved accuracy to 80.6% (95% CI 63.2-94.7%), while using only post-infection titres as predictor variables yielded an accuracy of 71.7% (95% CI 57.9-84.2%). These results show that machine learning classifiers can be used to overcome challenges in interpreting PRNT titres, making them useful tools in investigating dengue immune dynamics, infection history and identifying serotype-specific correlates of protection, which in turn can support the evaluation of clinical trial endpoints and vaccine development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3