Effect of developmental and adult diet composition on reproductive aging inDrosophila melanogaster

Author:

Ruchitha B GORCID,Kumar Devashish,Chandrakanth Mohankumar,Farooq Itibaw,Kumar Nishant,Sura Chand,Chetan S.,Tung SudiptaORCID

Abstract

ABSTRACTDiet significantly affects reproductive outcomes across species, yet the precise effects of macronutrient compositions beyond caloric intake on reproductive aging are understudied. Existing literature presents conflicting views on the fertility impacts of nutrient-rich versus nutrient-poor developmental diets, underscoring a notable research gap. This study addresses these gaps by examining effects of isocaloric diets with varied protein-to-carbohydrate ratios during both developmental and adult stages on reproductive aging of a large, outbred Drosophila melanogaster population (n = ∼2100). Our results clearly demonstrate an age-dependent dietary impact on reproductive output, initially dominated by the developmental diet, then by a combination of developmental and adult diets in early to mid-life, and ultimately by the adult diet in later life. Importantly, we found that the effects of developmental and adult diets on reproductive output are independent, with no significant interaction. Further investigations into the mechanisms revealed that the effect of developmental diet on fecundity is regulated via ovarioles formation and vitellogenesis; while, the effect of adult diet on fecundity is mostly regulated only via vitellogenesis. These insights resolve disputes in the literature about dietary impacts on fertility and offer valuable perspectives for optimizing fertility strategies in improving public health and conservation efforts in this changing world.HighlightsEffect of developmental and adult diet composition on reproduction is age-dependentDevelopmental diet affects early-life; adult diet late-life; and both affect mid-lifeBut the effect of developmental and adult diets do not interact with each otherDevelopmental diet regulates reproduction via ovarioles formation and vitellogenesisWhereas, adult diet regulates reproduction via differential vitellogenesis across age

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3