Human hippocampal CA3 uses specific functional connectivity rules for efficient associative memory

Author:

Watson Jake F.ORCID,Vargas-Barroso VictorORCID,Morse-Mora Rebecca J.,Navas-Olive AndreaORCID,Tavakoli Mojtaba R.ORCID,Danzl Johann G.ORCID,Tomschik Matthias,Rössler KarlORCID,Jonas PeterORCID

Abstract

AbstractThe human brain has remarkable computational power. It generates sophisticated behavioral sequences, stores engrams over an individual’s lifetime, and produces higher cognitive functions up to the level of consciousness. However, so little of our neuroscience knowledge covers the human brain, and it remains unknown whether this organ is truly unique, or is a scaled version of the extensively studied rodent brain. To address this fundamental question, we determined the cellular, synaptic, and connectivity rules of the hippocampal CA3 recurrent circuit using multicellular patch clamp-recording. This circuit is the largest autoassociative network in the brain, and plays a key role in memory and higher-order computations such as pattern separation and pattern completion. We demonstrate that human hippocampal CA3 employs sparse connectivity, in stark contrast to neocortical recurrent networks. Connectivity sparsifies from rodents to humans, providing a circuit architecture that maximizes associational power. Unitary synaptic events at human CA3–CA3 synapses showed both distinct species-specific and circuit-dependent properties, with high reliability, unique amplitude precision, and long integration times. We also identify differential scaling rules between hippocampal pathways from rodents to humans, with a moderate increase in the convergence of CA3 inputs per cell, but a marked increase in human mossy fiber innervation. Anatomically guided full-scale modeling suggests that the human brain’s sparse connectivity, expanded neuronal number, and reliable synaptic signaling combine to enhance the associative memory storage capacity of CA3. Together, our results reveal unique rules of connectivity and synaptic signaling in the human hippocampus, demonstrating the absolute necessity of human brain research and beginning to unravel the remarkable performance of our autoassociative memory circuits.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3