Fast and reliable ancestral reconstruction on ancient genotype data with non-negative Least square and Principal Component Analysis

Author:

de Gennaro LucianaORCID,Molinaro LudovicaORCID,Raveane AlessandroORCID,Santonastaso FedericaORCID,Saponetti Sandro SublimiORCID,Massi Michela CarlottaORCID,Pagani LucaORCID,Metspalu MaitORCID,Hellenthal GarrettORCID,Kivisild ToomasORCID,Ventura MarioORCID,Montinaro FrancescoORCID

Abstract

AbstractThe history of human populations has been strongly shaped by admixture events, contributing to the patterns of observed genetic diversity across populations. Given its significance for evolutionary and medical studies, many algorithms focusing on the inference of the genetic composition of admixed populations have been developed. In particular, the recent development of new ancestry estimation methods that consider the fragmentary nature of ancient genotype data, such as the f-statistics family and its derivations, have radically changed our understanding of the past. F-statistics capture similar genetic similarity information as Principal Component Analysis (PCA), which is widely used in population genetics to quantify genetic affinity between populations or individuals. In this study, we introduce ASAP (ASsessing ancestry proportions through Principal component Analysis) method that leverages PCA and Non-Negative Least Square (NNLS) to assess the ancestral compositions of admixed individuals given a large set of populations. We tested ASAP on different simulated models, incorporating high levels of missingness. Our results show its ability to reliably estimate ancestry across numerous scenarios, even those with a significant proportion of missing genotypes, in a fraction of the time required when using other tools. When harnessed on Eurasia’s genotype data, ASAP helped replicate and extend findings from previous studies proving to be a fast, efficient, and straightforward new ancestry estimation tool.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3