Interference underlies attenuation upon relearning in sensorimotor adaptation

Author:

Avraham GuyORCID,Ivry Richard BORCID

Abstract

AbstractSavings refers to the gain in performance upon relearning a task. In sensorimotor adaptation, savings is tested by having participants adapt to perturbed feedback and, following a washout block during which the system resets to baseline, presenting the same perturbation again. While savings has been observed with these tasks, we have shown that the contribution from implicit sensorimotor adaptation, a process that uses sensory prediction errors to recalibrate the sensorimotor map, is actually attenuated upon relearning (Avraham et al., 2021). In the present study, we test the hypothesis that this attenuation is due to interference arising from the washout block, and more generally, from experience with a different relationship between the movement and the feedback. In standard adaptation studies, removing the perturbation at the start of the washout block results in a salient error signal in the opposite direction to that observed during learning. As a starting point, we replicated the finding that implicit adaptation is attenuated following a washout period in which the feedback now signals a salient opposite error. When we eliminated visual feedback during washout, implicit adaptation was no longer attenuated upon relearning, consistent with the interference hypothesis. Next, we eliminated the salient error during washout by gradually decreasing the perturbation, creating a scenario in which the perceived errors fell within the range associated with motor noise. Nonetheless, attenuation was still prominent. Inspired by this observation, we tested participants with an extended experience with veridical feedback during an initial baseline phase and found that this was sufficient to cause robust attenuation of implicit adaptation during the first exposure to the perturbation. This effect was context-specific: It did not generalize to movements that were not associated with the interfering feedback. Taken together, these results show that the implicit sensorimotor adaptation system is highly sensitive to memory interference from a recent experience with a discrepant action-outcome contingency.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3