Pangenome graph analysis reveals extensive effector copy-number variation in spinach downy mildew

Author:

Skiadas Petros,Vidal Sofía Riera,Dommisse Joris,Mendel Melanie N.,Elberse Joyce,Van den Ackerveken Guido,de Jonge Ronnie,Seidl Michael F.

Abstract

AbstractPlant pathogens adapt at speeds that challenge contemporary disease management strategies like the deployment of disease resistance genes. The strong evolutionary pressure to adapt, shapes pathogens’ genomes, and comparative genomics has been instrumental in characterizing this process. With the aim to capture genomic variation at high resolution and study the processes contributing to adaptation, we here leverage and expand on an innovative, multi-genome method to construct, annotate, and analyse the first pangenome graph of an oomycete plant pathogen. We generated telomere-to-telomere genome assemblies of six genetically diverse isolates of the oomycete pathogenPeronospora effusa, the economically most important disease in cultivated spinach worldwide. The pangenome graph demonstrates thatP. effusagenomes are highly conserved, both in chromosomal structure and gene content, and revealed the continued activity of transposable elements which are directly responsible for 80% of the observed variation between the isolates. While most genes are generally conserved, pathogenicity related genes are highly variable between the isolates. Most of the variation is found in large gene clusters resulting from extensive copy-number expansion. Pangenome graph-based discovery can thus be effectively used to capture genomic variation at exceptional resolution, thereby providing a framework to study the biology and evolution of plant pathogens.Author SummaryPlant pathogens are known to evolve rapidly and overcome disease resistance of newly introduced crop varieties. This swift adaptation is visible in the genomes of these pathogens, which can be highly variable. Such genomic variation cannot be captured with contemporary comparative genomic methods that rely on a single reference genome or focus solely on protein coding genes. To overcome these limitations and compare multiple genomes in a robust and scalable method, we constructed the first pangenome graph for an oomycete filamentous plant pathogen with six telomere-to-telomere genome assemblies ofPeronospora effusa. This high-resolution pangenomic framework enabled detailed comparisons of the genomes at any level, from the nucleotide to the chromosome, and for any subset of protein-coding genes or transposable elements, to discover novel biology and potential mechanisms for the rapid evolution of this devastating pathogen.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3