Neurobiology-based Cognitive Biotypes Using Multi-scale Intrinsic Connectivity Networks in Psychotic Disorders

Author:

Andrés-Camazón PabloORCID,Martínez Diaz-Caneja CovadongaORCID,Ballem Ram,Chen Jiayu,Calhoun Vince D.ORCID,Iraji ArminORCID

Abstract

ABSTRACTObjectiveUnderstanding the neurobiology of cognitive dysfunction in psychotic disorders remains elusive, as does developing effective interventions. Limited knowledge about the biological heterogeneity of cognitive dysfunction hinders progress. This study aimed to identify subgroups of patients with psychosis with distinct patterns of functional brain alterations related to cognition (cognitive biotypes).MethodsB-SNIP consortium data (2,270 participants including participants with psychotic disorders, relatives, and controls) was analyzed. Researchers used reference-informed independent component analysis and the NeuroMark 100k multi-scale intrinsic connectivity networks (ICN) template to obtain subject-specific ICNs and whole-brain functional network connectivity (FNC). FNC features associated with cognitive performance were identified through multivariate joint analysis. K-means clustering identified subgroups of patients based on these features in a discovery set. Subgroups were further evaluated in a replication set and in relatives.ResultsTwo biotypes with different functional brain alteration patterns were identified. Biotype 1 exhibited brain-wide alterations, involving hypoconnectivity in cerebellar-subcortical and somatomotor-visual networks and worse cognitive performance. Biotype 2 exhibited hyperconnectivity in somatomotor-subcortical networks and hypoconnectivity in somatomotor-high cognitive processing networks, and better preserved cognitive performance. Demographic, clinical, cognitive, and FNC characteristics of biotypes were consistent in discovery and replication sets, and in relatives. 70.12% of relatives belonged to the same biotype as their affected family members.ConclusionsThese findings suggest two distinctive psychosis-related cognitive biotypes with differing functional brain patterns shared with their relatives. Patient stratification based on these biotypes instead of traditional diagnosis may help to optimize future research and clinical trials addressing cognitive dysfunction in psychotic disorders.

Publisher

Cold Spring Harbor Laboratory

Reference45 articles.

1. Nonsocial and social cognition in schizophrenia: current evidence and future directions

2. McCutcheon RA , Keefe RSE , McGuire PK. Cognitive impairment in schizophrenia: aetiology, pathophysiology, and treatment. Mol Psychiatry [Internet]. 2023 Jan 23 [cited 2023 Feb 22]; Available from: https://www.nature.com/articles/s41380-023-01949-9

3. Biological subtyping of psychiatric syndromes as a pathway for advances in drug discovery and personalized medicine;Nat Mental Health,2023

4. The Mouse Claustrum Is Required for Optimal Behavioral Performance Under High Cognitive Demand

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3