Comparison of gene-by-gene and genome-wide short nucleotide sequence based approaches to define the global population structure ofStreptococcus pneumoniae

Author:

King Alannah C.ORCID,Kumar Narender,Mellor Kate C.,Hawkins Paulina A.,McGee Lesley,Croucher Nicholas J.,Bentley Stephen D.,Lees John A.,Lo Stephanie W.ORCID

Abstract

AbstractDefining the population structure of a pathogen is a key part of epidemiology, as genomically related isolates are likely to share key clinical features such as antimicrobial resistance profiles and invasiveness. Multiple different methods are currently used to cluster together closely- related genomes, potentially leading to inconsistency between studies. Here, we use a global dataset of 26,306S. pneumoniaegenomes to compare four clustering methods: gene-by- gene seven-locus multi-locus sequencing typing (MLST), core genome MLST (cgMLST)- based hierarchical clustering (HierCC) assignments, Life Identification Number (LIN) barcoding, and k-mer-based PopPUNK clustering (known as GPSCs in this species). We compare the clustering results with phylogenetic and pan-genome analyses to assess their relationship with genome diversity and evolution, as we would expect a good clustering method to form a single monophyletic cluster that has high within-cluster similarity of genomic content. We show that the four methods are generally able to accurately reflect the population structure based on these metrics, and that the methods were broadly consistent with each other. We investigated further to study the discrepancies in clusters. The greatest concordance was seen between LIN barcoding and HierCC (Adjusted Mutual Information Score = 0.950), which was expected given that both methods utilise cgMLST, but have different methods for defining an individual cluster and different core genome schema. However, the existence of differences between the two methods show that the selection of a core genome schema can introduce inconsistencies between studies. GPSC and HierCC assignments were also highly concordant (AMI = 0.946), showing that k-mer based methods which use the whole genome and do not require the careful selection of a core genome schema are just as effective at representing the population structure. Additionally, where there were differences in clustering between these methods, this could be explained by differences in the accessory genome that were not identified in cgMLST. We conclude that forS. pneumoniae, standardised and stable nomenclature is important as the number of genomes available expands. Furthermore, the research community should transition away from seven- locus MLST, and cgMLST, GPSC, and LIN assignments should be used more widely. However, to allow for easy comparison between studies and to make previous literature relevant, the reporting of multiple clustering names should be standardised within research.Data summaryGenome sequences are deposited in the European Nucleotide Archive (ENA); accession numbers. Metadata of the pneumococcal isolates in this study have been submitted as a supplementary file and are also available on the Monocle Database available athttps://data.monocle.sanger.ac.uk/. The authors confirm all supporting data, code and protocols have been provided within the article or through supplementary data files.Impact StatementUsing a global dataset ofS. pneumoniaegenomes allows us to thoroughly observe and analyse discrepancies between different clustering methods. Whilst all methods in this study are used to clusterS. pneumoniaegenomes, no study has yet thoroughly compared the clustering results and discrepancies. This work summarises the strengths and weaknesses of the different methods and highlights the need for consistency between studies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3