Identification of a new cell cycle variant during multiciliated cell differentiation

Author:

Serizay JacquesORCID,Damaa Michella Khoury,Boudjema Amélie-Rose,Balagué Rémi,Faucourt Marion,Delgehyr NathalieORCID,Noûs Camille,Zaragosi Laure-EmmanuelleORCID,Barbry PascalORCID,Spassky Nathalie,Koszul Romain,Meunier Alice

Abstract

2AbstractA complex and conserved regulatory network drives the cell cycle. Individual components of this network are sometimes used in differentiated cells, i.e. to control organelle destruction in mammalian lens cells or light response in land plants. Some differentiated cells co-opt cell-cycle regulators more largely, to increase their ploidy using a cell cycle variant named endoreplication. Using single-cell RNA-seq profiling and functional assays in differentiating multiciliated cells, we identified a novel type of cell cycle variant that supports cytoplasmic organelle, rather than nuclear content amplification. This variant operates in post-mitotic, centriole-amplifying differentiating multiciliated cells and is characterized by (i) a circular trajectory of the transcriptome, (ii) sequential expression of more than 70% of the genes involved in S, G2 and M-like progression along this trajectory, and (iii) successive waves of cyclins. This cell cycle variant is tailored by the expression of the non-canonical cyclins O and A1 – which replace the transcriptionally silent cyclins E2 and A2 – and by the silencing of the APC/C inhibitor Emi1, two switches also detected in male meiosis, another variant of the canonical cell cycle where centriole and DNA replications are uncoupled. Re-expressing Cyclin E2, cyclin A2 or Emi1 is sufficient to induce partial replication and mitosis, suggesting that change in the regulation of expression of a few cell cycle key players drives a qualitative and quantitative tuning of Cdk activity, allowing the diversion of the cell cycle in the multiciliation variant. We also propose that this new cell cycle variant relies on the existence of a cytoplasmic – or centriolar – Cdk threshold, lower than the S-phase threshold, which affects only the cytoplasmic reorganization.One-Sentence SummaryMCC progenitors undergo a final, tailored iteration of the cell cycle during differentiation, to drive centriole amplification without DNA replication or mitosis.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3