Bayesian Functional Connectivity and Graph Convolutional Network for Working Memory Load Classification

Author:

Gangapuram HarshiniORCID,Manian Vidya

Abstract

ABSTRACTBrain responses related to working memory originate from distinct brain areas and oscillate at different frequencies. EEG signals with high temporal correlation can effectively capture these responses. Therefore, estimating the functional connectivity of EEG for working memory protocols in different frequency bands plays a significant role in analyzing the brain dynamics with increasing memory and cognitive loads, which remains largely unexplored. The present study introduces a Bayesian structure learning algorithm to learn the functional connectivity of EEG in sensor space. Next, the functional connectivity graphs are taken as input to the graph convolutional network to classify the working memory loads. The intrasubject (subject-specific) classification performed on 154 subjects for six different verbal working memory loads produced the highest classification accuracy of 96% and average classification accuracy of 89%, outperforming state-of-the-art classification models proposed in the literature. Furthermore, the proposed Bayesian structure learning algorithm is compared with state-of-the-art functional connectivity estimation methods through intersubject and intrasubject statistical analysis of variance. The results also show that the alpha and theta bands have better classification accuracy than the beta band.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3