Multi-Omics Exploration of ABA Involvement in Identifying Unique Molecular Markers for Single and Combined Stresses in tomato plants

Author:

Pardo-Hernández MiriamORCID,García-Pérez PascualORCID,Lucini LuigiORCID,Rivero Rosa MORCID

Abstract

AbstractOver the past decade, our research group has found that plant responses to combined abiotic stresses are unique and cannot be inferred from studying plants exposed to individual stresses. Adaptive mechanisms involve changes in gene expression, ion regulation, hormonal balance, and metabolite biosynthesis or degradation. Understanding how these mechanisms integrate from stress perception to biochemical and physiological adjustments is a major challenge in abiotic stress signaling studies. Today, vast amounts of -omics data (genomics, transcriptomics, proteomics, metabolomics, phenomics) are readily available. Additonally, each –omic level is regulated and influenced by the others, highlighting the complexity of plant metabolism’s response to stress. Considering abscisic acid (ABA) as a key regulator in plant abiotic stress responses, in our study, ABA-deficient plants (flc) exposed to single or combined salinity and heat stresses were evaluated and different -omics analyses were conducted. Significant changes in biomass, photosynthesis, ions, transcripts, and metabolites occurred in mutant plants under single or combined stresses. Exogenous ABA application inflcmutants did not fully recover plant phenotypes or metabolic levels but induced cellular reprogramming with changes in specific markers. Multi-omics analysis aimed to identify ABA-dependent, ABA-independent, or stress-dependent markers in plant responses to single or combined stresses. We demonstrated that studying different -omics together identifies specific markers for each stress condition not detectable individually. Our findings provide insight into specific metabolic markers in plant responses to single and combined stresses, highlighting specific regulation of metabolic pathways, ion absorption, and physiological responses crucial for plant tolerance to climate change.HighlightThe integration of different -omics has enabled the identification of specific ABA-dependent or –independent markers for single or combined abiotic stresses. These markers were not initially detectable when studying the different –omics individually.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3