Design nonrepetitive and diverse activity single-guide RNA by deep learning

Author:

Xia Yan,Liang Zeyu,Du Xiaowen,Cao Dengtian,Li Jing,Sun Lichao,Huo Yi-XinORCID,Guo ShuyuanORCID

Abstract

AbstractMultiplex and precise control of the gene expression based on CRISPR/Cas9 is important to metabolic regulation in synthetic biology. However, employing single guide RNAs (sgRNAs) that possess repetitive DNA sequences and exhibit uniform activity could detrimentally affect the editing process, undermining both its stability and regulatory potential. In this study, we developed a deep generative model based on a decoder-only Transformer architecture (sgRNAGen) for thede novogeneration of a series of nonrepetitive and diverse sgRNAs with activity. To assess the quality of sgRNAs generated by sgRNAGen, we evaluated their activity by targeting essential genes, with the results indicating that 98% of the generated sgRNAs were active inBacillus subtilis. The generated sgRNAs were further validated for applications in single-gene editing, large fragment knockouts, and multiplex editing. Notably, the efficiency of knocking out long fragments up to 169.5 kb reached 100%, and targeting multiple sites allowed for the creation of strains with various combinations of mutations in a single editing. Furthermore, we developed a CRISPRi system utilizing the designed sgRNAs to regulate gene expression with desired strength and high precision. SgRNAGen offers a method for devising nonrepetitive and diverse activity sgRNAs, enhancing metabolic control and advancing applications within synthetic biology.TOC

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3