SARS-CoV-2 3CLPro Dihedral Angles Reveal Allosteric Signaling

Author:

Evans DanielORCID,Sheraz SamreenORCID,Lau AlbertORCID

Abstract

AbstractIn allosteric proteins, identifying the pathways that signals take from allosteric ligand-binding sites to enzyme active sites or binding pockets and interfaces remains challenging. This avenue of research is motivated by the goals of understanding particular macromolecular systems of interest and creating general methods for their study. An especially important protein that is the subject of many investigations in allostery is the SARS-CoV-2 main protease (Mpro), which is necessary for coronaviral replication. It is both an attractive drug target and, due to intense interest in it for the development of pharmaceutical compounds, a gauge of the state-of-the-art approaches in studying protein inhibition. Here we develop a computational method for characterizing protein allostery and use it to study Mpro. We propose a role of the protein’s C-terminal tail in allosteric modulation and warn of unintuitive traps that can plague studies of the role of protein dihedrals angles in transmitting allosteric signals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3