Ensemble Meta-Learning using SVM for Improving Cardiovascular Disease Risk Prediction

Author:

Punn Narinder SinghORCID,Dewangan Deepak Kumar

Abstract

AbstractCardiovascular diseases (CVDs) remain a leading cause of mortality worldwide, posing a significant public health challenge. Early identification of individuals at high risk of CVD is crucial for timely intervention and prevention strategies. Machine learning techniques are increasingly being applied in healthcare for their ability to uncover complex patterns within large, multidimensional datasets. This study introduces a novel ensemble meta-learning framework designed to enhance cardiovascular disease (CVD) risk prediction. The framework strategically combines the predictive power of diverse machine learning algorithms – logistic regression, K nearest neighbors, decision trees, gradient boosting, gaussian Naive Bayes and XGBoost. Predicted probabilities from these base models are integrated using support vector machine as meta-learner. Rigorous performance evaluation over publicly available dataset demonstrates the improved performance of this ensemble approach compared to individual. This research highlights the potential of ensemble meta-learning techniques to improve predictive modeling in healthcare.

Publisher

Cold Spring Harbor Laboratory

Reference34 articles.

1. World Heart Federation: Confronting the World’s Number One Killer. [Online; accessed September, 2023] (2023). https://world-heart-federation.org/wp-content/uploads/World-Heart-Report-2023.pdf

2. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019

3. Heart disease and stroke statistics–2017 update;Circulation,2017

4. Stress and cardiovascular disease;Nature Reviews Cardiology,2012

5. Obesity and cardiovasculardiseases;Current problems in cardiology,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3