Benchmarking Machine Learning Missing Data Imputation Methods in Large-Scale Mental Health Survey Databases

Author:

Prakash Preethi,Street Kelly,Narayanan Shrikanth,Fernandez Bridget A.,Shen YufengORCID,Shu ChangORCID

Abstract

AbstractDatabases with mental and behavioral health surveys suffer from missingness when participants skip the entire survey, affecting the data quality and sample size. We investigated the missing data patterns and evaluate the imputation performance in Simons Powering Autism Research (SPARK), a large-scale autism cohort consists of over 117,000 participants. Four common methods were assessed – Multiple Imputation by Chained Equations (MICE), K-Nearest Neighbors (KNN), MissForest, and Multiple Imputation with Denoising Autoencoders (MIDAS). In a complete subset of 15,196 autism participants, we simulated three types of missingness patterns. We observed that MIDAS and KNN performed the best as the rate of random missingness increased and when blockwise missingness was simulated. The average computational times for MIDAS and KNN were 10 minutes, 35 minutes for MissForest, and 290 minutes for MICE. MIDAS and KNN both provide promising imputation performance in mental and behavioral health survey data that exhibit blockwise missingness patterns.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3