Quinolinic acid links kidney injury to brain toxicity

Author:

Saliba AfafORCID,Debnath Subrata,Tamayo Ian,Tumova Jana,Maddox Meyer,Singh Pragya,Fastenau Caitlyn,Maity Soumya,Lee Hak Joo,Zhang Guanshi,Hejazi Leila,O’Connor Jason C.,Fongang BernardORCID,Hopp Sarah C,Bieniek Kevin F.,Lechleiter James D.,Sharma Kumar

Abstract

ABSTRACTKidney dysfunction often leads to neurological impairment, yet the complex kidney-brain relationship remains elusive. We employed spatial and bulk metabolomics to investigate a mouse model of rapid kidney failure induced by mouse double minute 2 (Mdm2)conditional deletion in the kidney tubules to interrogate kidney and brain metabolism. Pathway enrichment analysis of focused plasma metabolomics panel pinpointed tryptophan metabolism as the most altered pathway with kidney failure. Spatial metabolomics showed toxic tryptophan metabolites in the kidneys and brains, revealing a novel connection between advanced kidney disease and accelerated kynurenine degradation. In particular, the excitotoxic metabolite quinolinic acid was localized in ependymal cells adjacent to the ventricle in the setting of kidney failure. These findings were associated with brain inflammation and cell death. A separate mouse model of acute kidney injury also had an increase in circulating toxic tryptophan metabolites along with altered brain inflammation. Patients with advanced CKD similarly demonstrated elevated plasma kynurenine metabolites and quinolinic acid was uniquely correlated with fatigue and reduced quality of life in humans. Overall, our study identifies the kynurenine pathway as a bridge between kidney decline, systemic inflammation, and brain toxicity, offering potential avenues for diagnosis and treatment of neurological issues in kidney disease.

Publisher

Cold Spring Harbor Laboratory

Reference69 articles.

1. Neurological Complications of Renal Disease

2. Goyal A , Daneshpajouhnejad P , Hashmi MF , and Bashir K . StatPearls. Treasure Island (FL); 2023.

3. Acute kidney injury in patients with severe sepsis or septic shock: a comparison between the ’Risk, Injury, Failure, Loss of kidney function, End-stage kidney disease’ (RIFLE), Acute Kidney Injury Network (AKIN) and Kidney Disease: Improving Global Outcomes (KDIGO) classifications;Clin Kidney J,2017

4. Prevention CfDCa. Chronic Kidney Disease in the United States, 2023. https://www.cdc.gov/kidneydisease/publications-resources/CKD-national-facts.html.

5. Chronic Kidney Disease and Its Complications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3