KAS-ATAC reveals the genome-wide single-stranded accessible chromatin landscape of the human genome

Author:

Kim Samuel H.,Marinov Georgi K.ORCID,Greenleaf William J.

Abstract

AbstractGene regulation in most eukaryotes involves two fundamental physical processes – alterations in the packaging of the genome by nucleosomes, with activecis-regulatory elements (CREs) generally characterized by an open-chromatin configuration, and the activation of transcription. Mapping these physical properties and biochemical activities genome-wide – through profiling chromatin accessibility and active transcription – are key tools used to understand the logic and mechanisms of transcription and its regulation. However, the relationship between these two states has until now not been accessible to simultaneous measurement. To address this, we developed KAS-ATAC, a combination of the KAS-seq (Kethoxal-Assisted SsDNA sequencing and ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) methods for mapping single-stranded DNA (and thus active transcription) and chromatin accessibility, respectively, enabling the genome-wide identification of DNA fragments that are simultaneously accessible and contain ssDNA. We use KAS-ATAC to evaluate levels of active transcription over different classes of regulatory elements in the human genome, to estimate the absolute levels of transcribed accessible DNA over CREs, to map the nucleosomal configurations associated with RNA polymerase activities, and to assess transcription factor association with transcribed DNA through transcription factor binding site (TFBS) footprinting. We observe lower levels of transcription over distal enhancers compared to promoters, surprisingly high abundance of ssDNA immediately around/within CTCF occupancy footprints, and distinct nucleosomal configurations around transcription initiation sites associated with active transcription. Remarkably, most TFs associate equally with transcribed and non-transcribed DNA but a few factors specifically do not exhibit footprints over ssDNA-containing fragments. We anticipate KAS-ATAC to continue to derive useful insights into chromatin organization and transcriptional regulation in other contexts in the future.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3