Investigating tissue microstructure using steady-state diffusion MRI

Author:

Tendler Benjamin C.ORCID

Abstract

AbstractDiffusion MRI is a leading method to non-invasively characterise brain tissue microstructure across multiple domains and scales. Diffusion-weighted steady-state free precession (DW-SSFP) is an established imaging sequence for post-mortem MRI, addressing the challenging imaging environment of fixed tissue with short T2and low diffusivities. However, a current limitation of DW-SSFP is signal interpretation: it is not clear what diffusion ‘regime’ the sequence probes and therefore its potential to characterise tissue microstructure. Building on a model of Extended Phase Graphs (EPG), I establish two alternative representations of the DW-SSFP signal in terms of (1) conventional b-values (time-independentdiffusion) and (2) encoding power-spectra (time-dependentdiffusion). The proposed representations provide insights into how different parameter regimes and gradient waveforms impact the diffusion properties of DW-SSFP. Using these representations, I introduce an approach to incorporate existing diffusion models into DW-SSFP without the requirement of extensive derivations. Investigations incorporating free-diffusion and tissue-relevant microscopic restrictions (cylinder of varying radius) give excellent agreement to complementary analytical models and Monte Carlo simulations. Experimentally, the time-independentrepresentation is used to derive Tensor and proof of principle NODDI estimates in a whole human post-mortem brain. A final SNR-efficiency investigation demonstrates the theoretical potential of DW-SSFP for ultra-high field microstructural imaging.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3