Advancements in Human Norovirus Cultivation in Human Intestinal Enteroids

Author:

Ettayebi Khalil,Kaur Gurpreet,Patil Ketki,Dave Janam,Ayyar B. Vijayalakshmi,Tenge Victoria RORCID,Neill Frederick H.,Zeng Xi-Lei,Speer Allison L.ORCID,Di Rienzi Sara C.,Britton Robert A.ORCID,Blutt Sarah E.,Crawford Sue E.,Ramani SasirekhaORCID,Atmar Robert L.,Estes Mary K.ORCID

Abstract

AbstractHuman noroviruses (HuNoVs) are a significant cause of both epidemic and sporadic acute gastroenteritis worldwide. The lack of a reproducible culture system for HuNoVs was a major obstacle in studying virus replication and pathogenesis for almost a half-century. This barrier was overcome with our successful cultivation of multiple HuNoV strains in human intestinal enteroids (HIEs), which has significantly advanced HuNoV research. We previously optimized culture media conditions and generated genetically-modified HIE cultures to enhance HuNoV replication in HIEs. Building upon these achievements, we now present additional advancements to this culture system, which involve testing different media, unique HIE lines, and additional virus strains. HuNoV infectivity was evaluated and compared in new HIE models, including HIEs generated from different intestinal segments of individual adult organ donors, HIEs made from human embryonic stem cell-derived human intestinal organoids that were transplanted into mice (H9tHIEs), genetically-engineered (J4FUT2knock-in [KI], J2STAT1knock-out [KO]) HIEs, as well as HIEs derived from a patient with common variable immunodeficiency (CVID) and from infants. Our findings reveal that small intestinal HIEs, but not colonoids, from adults, H9tHIEs, HIEs from a CVID patient, and HIEs from infants support HuNoV replication with segment and strain-specific differences in viral infection. J4FUT2-KIHIEs exhibit the highest susceptibility to HuNoV infection, allowing the cultivation of a broader range of GI and GII HuNoV strains than previously reported. Overall, these results contribute to a deeper understanding of HuNoVs and highlight the transformative potential of HIE cultures in HuNoV research.ImportanceHuman noroviruses (HuNoVs) are very contagious and cause significant acute gastroenteritis globally, but studying them has been hindered by the lack of a reproducible culture system for nearly 50 years. This barrier was overcome by successfully cultivating multiple HuNoV strains in human intestinal enteroids (HIEs), advancing HuNoV research. We previously optimized culture conditions and developed genetically modified HIEs to enhance HuNoV replication. In this study, we tested different media, unique HIE lines, and additional virus strains, evaluating HuNoV infectivity in new HIE models. These models include HIEs from various intestinal segments of adult donors, human embryonic stem cell-derived HIEs transplanted into mice (H9tHIEs), genetically-engineered HIEs (J4FUT2knock-in [KI], J2STAT1knock-out [KO]), HIEs from a common variable immunodeficiency (CVID) patient, and from infants. Our findings show that adult small intestinal HIEs, H9tHIEs, CVID patient HIEs, and infant HIEs support HuNoV replication with segment and strain-specific differences. J4FUT2-KIHIEs exhibited the highest susceptibility, allowing cultivation of a broader range of HuNoV strains. These results enhance the understanding of HuNoVs and highlight the transformative potential of HIE cultures in HuNoV research.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3