Mucin-induced surface dispersal ofStaphylococcus aureusandStaphylococcus epidermidisvia quorum sensing-dependent and independent mechanisms

Author:

Jacob Kristin M.,Hernandez-Villamizar Santiago,Hammer Neal D.ORCID,Reguera GemmaORCID

Abstract

AbstractNasopharyngeal carriage of staphylococci spreads potentially pathogenic strains into (peri)oral regions and increases the chance of cross-infections. Some laboratory strains can also move rapidly on hydrated agar surfaces, but the biological relevance of these observations is not clear. Using soft-agar (0.3% w/v) plate assays, we demonstrate the rapid surface dispersal of (peri)oral isolates ofStaphylococcus aureusandStaphylococcus epidermidisand closely related laboratory strains in the presence of mucin glycoproteins. Mucin-induced dispersal was a stepwise process initiated by the passive spreading of the growing colonies followed by their rapid branching (dendrites) from the colony edge. Although most spreading strains used mucin as a growth substrate, dispersal was primarily dependent on the lubricating and hydrating properties of the mucins. UsingS. aureusJE2 as a genetically tractable representative, we demonstrate that mucin-induced dendritic dispersal, but not colony spreading, is facilitated by the secretion of surfactant-active Phenol-Soluble Modulins (PSMs) in a process regulated by theagrquorum sensing system. Furthermore, the dendritic dispersal ofS. aureusJE2 colonies was further stimulated in the presence of surfactant-active supernatants recovered from the most robust (peri)oral spreaders ofS. aureusandS. epidermidis. These findings suggest complementary roles for lubricating mucins and staphylococcal PSMs in the active dispersal of potentially pathogenic strains from perioral to respiratory mucosae, where gel-forming, hydrating mucins abound. They also highlight the impact that interspecies interactions have on the co-dispersal ofS. aureuswith other perioral bacteria, heightening the risk of polymicrobial infections and the severity of the clinical outcomes.ImportanceDespite lacking classical motility machinery, nasopharyngeal staphylococci spread rapidly in (peri)oral and respiratory mucosa and cause cross-infections. We describe laboratory conditions for the reproducible study of staphylococcal dispersal on mucosa-like surfaces and the identification of two dispersal stages (colony spreading and dendritic expansion) stimulated by mucin glycoproteins. The mucin type mattered, as dispersal required the surfactant activity and hydration provided by some mucin glycoproteins. While colony spreading was a passive mode of dispersal lubricated by the mucins, the more rapid and invasive form of dendritic expansion ofStaphylococcus aureusandStaphylococcus epidermidisrequired additional lubrication by surfactant-active peptides (phenol-soluble modulins) secreted at high cell densities through quorum sensing. These results highlight a hitherto unknown role for gel-forming mucins in the dispersal of staphylococcal strains associated with cross-infections and point at perioral regions as overlooked sources of carriage and infection by staphylococci.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3