p53 and TIGAR promote redox control to protect against metabolic dysfunction-associated steatohepatitis

Author:

Wittke Celine IORCID,Cheung Eric CORCID,Athineos DimitrisORCID,Clements NicolaORCID,Butler LiamORCID,Hughes Mark,Morrison VivienneORCID,Watt Dale MORCID,Blyth KarenORCID,Vousden Karen HORCID,Humpton Timothy JORCID

Abstract

ABSTRACTTP53is a potent tumour suppressor that coordinates diverse stress response programmes within the cell. The activity of p53 is frequently context and cell type-dependent, and ranges from pro-survival activities, including the implementation of transient cell cycle arrest and metabolic rewiring, through to cell death. In addition to tumour suppressor functions, p53 also has established roles in the pathological response to stress that occurs during tissue damage and repair, including within the liver. Metabolic dysfunction-associated steatohepatitis (MASH) is a major driver of hepatocellular carcinoma (HCC), but our understanding of the molecular determinants of MASH development remains incomplete.Here, using a p53 reporter mouse, we report early and sustained activation of hepatic p53 in response to an obesogenic high fat and high sugar diet. In this context, liver-specific loss of p53 accelerates the progression of benign fatty liver disease to MASH that is characterised by high levels of reactive oxygen species (ROS), extensive fibrosis, and chronic inflammation. Using anin vitroculture system, we show that p53 functions to control ROS and protect against the development of MASH, in part through induction of the antioxidant gene TP53-induced glycolysis and apoptosis regulator (TIGAR). Our work demonstrates an important role for the p53-TIGAR axis in protecting against MASH, and identifies redox control as an essential barrier against liver disease progression.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3