A single septin from a polyextremotolerant yeast recapitulates many canonical functions of septin hetero-oligomers

Author:

Hamilton Grace EORCID,Wadkovsky Katherine N,Gladfelter Amy SORCID

Abstract

AbstractMorphological complexity and plasticity are hallmarks of polyextremotolerant fungi. Septins are conserved cytoskeletal proteins and key contributors to cell polarity and morphogenesis. They sense membrane curvature, coordinate cell division, and influence diffusion at the plasma membrane. Four septins homologs are conserved from yeasts to humans, the two systems in which septins have been studied most extensively. But there is also a fifth family of septin proteins that remain biochemically mysterious. Members of this family, known as Group 5 septins, appear in the genomes of filamentous fungi, and thus have been understudied due to their absence from ascomycete yeasts.Knufia petricolais an emerging model polyextremotolerant black fungus that can serve as a model system for understudied Group 5 septins. We have recombinantly expressed and biochemically characterizedKpAspE, a Group 5 septin fromK. petricola, demonstrating that this septin––by itselfin vitro–– recapitulates many of the functions of canonical septin hetero-octamers.KpAspE is an active GTPase that forms diverse homo-oligomers, senses membrane curvature, and interacts with the terminal subunit of canonical septin hetero-octamers. These findings raise the possibility that Group 5 septins govern the higher order structures formed by canonical septins, which inK. petricolacells form extended filaments. These findings provide insight into how septin hetero-oligomers evolved from ancient homomers and raise the possibility that Group 5 septins govern the higher order structures formed by canonical septins.Significance StatementSeptins are understudied cytoskeletal proteins. Here, we biochemically characterizedKpAspE, a novel Group 5 septin from a polyextremotolerant black fungus.KpAspE in isolation recapitulates many properties of canonical septin hetero-octamersin vitroand interacts with the Cdc11, the terminal subunit of those octamers.These findings provide insight into how ancient septins may have evolved and diversified from homopolymers and suggest that many of the septin functions were present in the ancestral protein.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3