Generation length of the world’s amphibians and reptiles

Author:

Mancini G.ORCID,Santini L.ORCID,Cazalis V.ORCID,Ficetola F.ORCID,Meiri S.ORCID,Roll U.ORCID,Silvestri S.ORCID,Pincheira-Donoso D.ORCID,Di Marco M.ORCID

Abstract

AbstractVariation in life histories influences demographic processes from adaptive changes to population declines leading to extinction. Among life history traits, generation length offers a critical feature to forecast species’ demographic trajectories such as population declines (widely used by the IUCN Red List of Threatened Species) and adaptability to environmental change over time. Therefore, estimates of generation length are crucial to monitor demographic stability or future change in highly threatened organisms, particularly ectothermic tetrapods (amphibians and reptiles) – which rank among the most threatened groups – but for which uncertainty in future impacts remains high. Despite its importance, generation length for amphibians and reptiles is largely missing. Here, we aimed to fill-in this gap by modeling generation lengths for amphibians, squamates and testudines as a function of species size, climate, life history, and phylogeny using generalized additive models and phylogenetic generalized least squares. We obtained estimates of generation lengths for 4,543 (52%) amphibians, 8,464 (72%) squamates and 118 (32%) testudines. Our models performed well for most families, for example Bufonidae in amphibians, Lacertidae and Colubridae in squamates and Geoemydidae in testudines, while we found high uncertainty around the prediction of a few families, notably Chamaeleonidae. Species’ body size and mean temperature were the main predictors of generation length in all groups. Although our estimates are not meant to substitute robust and validated measurements from field studies or natural history museums, they can help reduce existing biases in conservation assessments until field data will be comprehensively available.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3