aniSNA : An R package to assess bias and uncertainty in social networks obtained from animals sampled via direct observations or satellite telemetry

Author:

Kaur PrabhleenORCID,Ciuti Simone,Reinking Adele K.,Beck Jeffrey L.,Salter-Townshend MichaelORCID

Abstract

AbstractAnimal social network analysis using GPS telemetry datasets provides insights into group dynamics, social structure, and interactions of the animal communities. It aids conservation by characterizing key aspects of animal sociality - including spatially explicit information on where sociality occurs (e.g., habitats, migratory corridors), contributing to informed management strategies for wildlife populations. The aniSNA package provides functions to assess and leverage data collected by sampling a subset of an animal population to perform social network analysis. The methodologies offered in this package are compatible with a variety of location and grouping data, collected through various means (e.g., direct observations, biologgers), however, they are particularly well suited to autocorrelated data streams such as data collected through GPS telemetry radio collars. The techniques assess the data’s suitability to extract reliable statistical inferences from social networks and compute uncertainty estimates around the network metrics in the scenario where a fraction of the population is monitored. The package functions are user-friendly and allow for the implementation of pre-network data permutations for auto-correlated data streams, sensitivity analysis under downsampling, bootstrapping to establish confidence intervals for global and node-level network metrics, and correlation and regression analysis to assess the robustness of node-level network metrics. Using this package, animal ecologists will be able to compute social network metrics, both at the population and individual level, assess their reliability, and use such metrics in further analyses, e.g., to study social network variation within and across populations or link individual sociality to life history. This software also has plotting features that allow for visual interpretation of the findings.

Publisher

Cold Spring Harbor Laboratory

Reference57 articles.

1. The influence of phylogeny, social style, and sociodemographic factors on macaque social network structure

2. Bonnell T (2023). netTS: netTS: network time series. R package version 0.1.0.

3. UCINET

4. network: A Package for Managing Relational Data inR

5. Butts CT (2015). network: Classes for Relational Data. The Statnet Project (http://www.statnet.org). R package version 1.13.0.1, URL https://CRAN.R-project.org/package=network.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3