A novel splicing graph allows a direct comparison between exon-based and splice junction-based approaches to alternative splicing detection

Author:

Aquino Jelard,Witoslawski Daniel,Park Steve,Holder Jessica,Amei Amei,Han Mira V.ORCID

Abstract

AbstractThere are primarily two computational approaches to alternative splicing detection: splice junction-based and exon-based approaches. Despite their shared goal of addressing the same biological problem, these approaches have not been reconciled before. We devised a novel graph structure and algorithm aimed at mapping between the exonic parts and splicing events detected by the two different methods. Through simulations, we demonstrated disparities in sensitivity and specificity between splice junction-based and exon-based methods. When applied to empirical data, there were large discrepancies in the results, suggesting that the methods are complementary. With the discrepancies localized to individual events and exonic parts, we were able to gain insights into the strengths and weaknesses inherent in each approach. Finally, we integrated the results to generate a comprehensive list of both common and unique alternative splicing events detected by both methodologies.Availabilityhttps://github.com/HanLabUNLV/GrASEContactmira.han@unlv.eduSupplementary informationSupplementary data are available online.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3