Abstract
AbstractDevelopmental connectomic studies have shown that the modular organization of functional networks in the human brain undergoes substantial reorganization with age to support cognitive growth. However, these studies implicitly assume that each brain region belongs to one and only one specific network module, ignoring the potential spatial overlap between functional modules. How the overlapping functional modular architecture develops and whether this development is related to structural signatures remain unknown. Using longitudinal multimodal structural, functional, and diffusion MRI data from 305 children (aged 6–14 years), we investigated the development of the overlapping modular architecture of functional networks, and further explored their structural associations. Specifically, an edge-centric network model was used to identify the overlapping functional modules, and the nodal overlap in module affiliations was quantified using the entropy measure. We showed a remarkable regional inhomogeneity in module overlap in children, with higher entropy in the ventral attention, somatomotor, and subcortical networks and lower entropy in the visual and default-mode networks. Furthermore, the overlapping modules developed in a linear, spatially dissociable manner from childhood to adolescence, with significantly reduced entropy in the prefrontal cortex and putamen and increased entropy in the parietal lobules. Personalized overlapping modular patterns capture individual brain maturity as characterized by brain age. Finally, the overlapping functional modules can be significantly predicted by integrating gray matter morphology and white matter network properties. Our findings highlight the maturation of overlapping network modules and their structural substrates, thereby advancing our understanding of the principles of connectome development.
Publisher
Cold Spring Harbor Laboratory