AAnet resolves a continuum of spatially-localized cell states to unveil tumor complexity

Author:

Venkat Aarthi,Youlten Scott E.,Juan Beatriz P. San,Purcell Carley,Amodio Matthew,Burkhardt Daniel B.,Benz Andrew,Holst Jeff,McCool Cerys,Mollbrink Annelie,Lundeberg Joakim,van Dijk David,Goldstein Leonard D.,Kummerfeld Sarah,Krishnaswamy Smita,Chaffer Christine L.

Abstract

SummaryIdentifying functionally important cell states and structure within a heterogeneous tumor remains a significant biological and computational challenge. Moreover, current clustering or trajectory-based computational models are ill-equipped to address the notion that cancer cells reside along a phenotypic continuum. To address this, we present Archetypal Analysis network (AAnet), a neural network that learns key archetypal cell states within a phenotypic continuum of cell states in single-cell data. Applied to single-cell RNA sequencing data from pre-clinical models and a cohort of 34 clinical breast cancers, AAnet identifies archetypes that resolve distinct biological cell states and processes, including cell proliferation, hypoxia, metabolism and immune interactions. Notably, archetypes identified in primary tumors are recapitulated in matched liver, lung and lymph node metastases, demonstrating that a significant component of intratumoral heterogeneity is driven by cell intrinsic properties. Using spatial transcriptomics as orthogonal validation, AAnet-derived archetypes show discrete spatial organization within tumors, supporting their distinct archetypal biology. We further reveal that ligand:receptor cross-talk between cancer and adjacent stromal cells contributes to intra-archetypal biological mimicry. Finally, we use AAnet archetype identifiers to validate GLUT3 as a critical mediator of a hypoxic cell archetype harboring a cancer stem cell population, which we validate in human triple-negative breast cancer specimens. AAnet is a powerful tool to reveal functional cell states within complex samples from multimodal single-cell data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3