Structure of the II2-III2-IV2 mitochondrial supercomplex from the parasitePerkinsus marinus

Author:

Wú Fēi,Mühleip AlexanderORCID,Gruhl Thomas,Sheiner LilachORCID,Maréchal AmandineORCID,Amunts AlexeyORCID

Abstract

Respiratory complexes have co-evolved into supercomplexes in different clades to sustain energy production at the basis of eukaryotic life. In this study, using cryogenic electron microscopy, we determined the 2.1 Å resolution structure of a 104-subunit II2-III2-IV2 supercomplex from the parasite Perkinsus marinus, related to Apicomplexa, capable of complete electron transport from succinate to molecular oxygen. A feature of the parasite is the association of two copies of complex II via the apicomplexan subunit SDHG that interacts with both complexes III and IV and bridge the supercomplex. In thec1state, we identified two protein factors, ISPR1 and ISPR2 bound on the surface of complex III, where Cytochromecdocks, acting as negative regulators. The acquisition of 15 specific subunits to complex IV results in its lateral offset, increasing the distance between the Cytochromecelectron donor and acceptor sites. The domain homologous to canonical mitochondria-encoded transmembrane subunit COX2 is made of three separate polypeptides encoded in the nucleus, and their correct assembly is a prerequisite for electron transport in the supercomplex. Subunits Cytochromeband COX1 comprise a +2 frameshift introduced during protein synthesis by the mitoribosome. Among 114 modelled endogenous lipids, we detect a direct contribution to the formation of the divergent supercomplex and its functional sites, including assembly of CII and ubiquinone binding. Together, our findings expose the uniqueness of the principal components of bioenergetics in the mitochondria of parasites.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3