Abstract
AbstractIschemia/reperfusion (I/R) injury significantly contributes to the morbidity and mortality associated with cardiac events. Poloxamer 188 (P188), a nonionic triblock copolymer, has been proposed to mitigate I/R injury by stabilizing cell membranes. However, the underlying mechanisms remain incompletely understood, particularly concerning endothelial cell function and nitric oxide (NO) production.We employed human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) and endothelial cells (ECs) to elucidate the effects of P188 on cellular survival, function, and NO secretion under simulated I/R conditions. iPSC-CMs contractility and iPSC-ECs’ NO production were assessed following exposure to P188. Further, an isolated heart model using Brown Norway rats subjected to I/R injury was utilized to evaluate the ex-vivo cardioprotective effects of P188, examining cardiac function and NO production, with and without the administration of a NO inhibitor.In iPSC-derived models, P188 significantly preserved CM contractile function and enhanced cell viability after hypoxia/reoxygenation. Remarkably, P188 treatment led to a pronounced increase in NO secretion in iPSC-ECs, a novel finding demonstrating endothelial protective effects beyond membrane stabilization. In the rat isolated heart model, administration of P188 during reperfusion notably improved cardiac function and reduced I/R injury markers. This cardioprotective effect was abrogated by NO inhibition, underscoring the pivotal role of NO. Additionally, a dose-dependent increase in NO production was observed in non-ischemic rat hearts treated with P188, further establishing the critical function of NO in P188 induced cardioprotection.In conclusion, our comprehensive study unveils a novel role of NO in mediating the protective effects of P188 against I/R injury. This mechanism is evident in both cellular models and intact rat hearts, highlighting the potential of P188 as a therapeutic agent against I/R injury. Our findings pave the way for further investigation into P188’s therapeutic mechanisms and its potential application in clinical settings to mitigate I/R-related cardiac dysfunction.
Publisher
Cold Spring Harbor Laboratory