Age-related constraints on the spatial geometry of the brain

Author:

Escalante Yuritza Y.,Adams Jenna N.ORCID,Yassa Michael A.,Janssen Niels

Abstract

ABSTRACTAge-related structural brain changes may be better captured by assessing complex spatial geometric differences rather than isolated changes to individual regions. We applied a novel analytic method to quantify age-related changes to the spatial anatomy of the brain by measuring expansion and compression of global brain shape and the distance between cross-hemisphere homologous regions. To test how global brain shape and regional distances are affected by aging, we analyzed 2,603 structural MRIs (range: 30-97 years). Increasing age was associated with global shape expansion across inferior-anterior gradients, global compression across superior-posterior gradients, and regional expansion between frontotemporal homologues. Specific patterns of global and regional expansion and compression were further associated with clinical impairment and distinctly related to deficits in various cognitive domains. These findings suggest that changes to the complex spatial anatomy and geometry of the aging brain may be associated with reduced efficiency and cognitive dysfunction in older adults.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3