Efficient Seeding for Error-Prone Sequences with SubseqHash2

Author:

Li XiangORCID,Chen KeORCID,Shao MingfuORCID

Abstract

AbstractSeeding is an essential preparatory step for large-scale sequence comparisons. Substring-based seeding methods such as kmers are ideal for sequences with low error rates but struggle to achieve high sensitivity while maintaining a reasonable precision for error-prone long reads. SubseqHash, a novel subsequence-based seeding method we recently developed, achieves superior accuracy to substring-based methods in seeding sequences with high mutation/error rates, while the only drawback is its computation speed. In this paper, we propose SubseqHash2, an improved algorithm that can compute multiple sets of seeds in one run by definingkorders over all length-ksubsequences and identifying the optimal subsequence under each of thekorders in a single dynamic programming framework. The algorithm is further accelerated using SIMD instructions. SubseqHash2 achieves a 10-50×speedup over repeating SubseqHash while maintaining the high accuracy of seeds. We demonstrate that SubseqHash2 drastically outperforms popular substring-based methods including kmers, minimizers, syncmers, and Strobemers for three fundamental applications. In read mapping, SubseqHash2 can generate adequate seed-matches for aligning hard reads that minimap2 fails on. In sequence alignment, SubseqHash2 achieves high coverage of correct seeds and low coverage of incorrect seeds. In overlap detection, seeds produced by SubseqHash2 lead to more correct overlapping pairs at the same false-positive rate. With all the algorithmic breakthroughs of SubseqHash2, we clear the path for the wide adoption of subsequence-based seeds in long-read analysis. SubseqHash2 is available athttps://github.com/Shao-Group/SubseqHash2.

Publisher

Cold Spring Harbor Laboratory

Reference27 articles.

1. Chaining algorithms for multiple genome comparison;Journal of Discrete Algorithms,2005

2. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs

3. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing

4. Andrea Califano and Isidore Rigoutsos . FLASH: A fast look-up algorithm for string homology. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR’93), pages 353–359. IEEE, 1993.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3